Unitary Self-Adjoint Logics of Projections

Marjan Matvejchuk¹

Received July 4, 1997

Quantum logics of projections being self-adjoint with respect to a unitary operator on a Hilbert space are studied.

1. INTRODUCTION

In Matvejchuk (1995), a universal method for the construction of quantum logics of projections was given. Let *H* be a Hilbert space with the inner product (.,.). Let *A* be a linear or conjugate linear invertible bounded operator in *H*. Put $\langle x, y \rangle = (Ax, y), \forall x, y \in H$. It is clear that $B \in B(H)$ is *A*-selfadjoint, i.e., $\langle Bx, y \rangle = \langle x, By \rangle, \forall x, y \in H$ iff $B = A^{-1}B^*A$. Denote by P_A the set $\{p \in B(H): p^2 = p, \langle px, y \rangle = \langle x, py \rangle, \forall x, y \in H\}$ of all *A*-self-adjoint projections (=idempotents). Let Π_A be the set of all orthogonal projections from P_A . With respect to the standard relations, the ordering $p \leq g$ iff pg =gp = p and the orthocomplementation $p \rightarrow p^{\perp} \equiv I - p$ the set P_A is a quantum logic.

For the case A > 0, the logic P_A is isomorphic to the lattice P_I of all orthogonal projections in B(H) (see Matvejchuk, 1989). In Matvejchuk (1995, n.d.), the hyperbolic logic P_J and the conjugation logic $P_{\mathcal{T}}$ was studied, where J is a symmetry ($J^* = J$, $J^2 = I$) and \mathcal{T} is an operator conjugation.

In this paper, a logic P_U , where U is an unitary operator, is studied.

2. THE STRUCTURE OF THE PROJECTIONS IN P_U

Proposition 1. If $p \in P_U$, then $p^* \in P_U$, $pU = Up^*$, $Up = p^*U$ and $pU^2 = U^2p$.

¹Department of Physics and Mathematics, Pedagogical University, 432700 Uljanovsk, Russia; e-mail: Marjan.Matvejchuk@ksu.ru.

Proof. Let $p \in P_U$. Then $p = U^*p^*U$. This means that $p^* = UpU^*$ and $p^* = (U^*p^*U)^* = U^*pU$. Hence $p^* \in P_U$ and $Up = p^*U$, $Up^* = pU$. In addition, $UpU^{-1} = p^* = U^{-1}pU$ implies $U^2p = pU^2$.

Proposition 2. Let p be a bounded projection. Denote by e the orthogonal projection onto $pH \cap p^*H$. Then e is the greatest orthogonal projection with the property $e \le p$. If $p \in P_U$, then $e \in \prod_U$.

Proof. It is clear that $ep = (p^*e)^* = e^* = e = pe$. Thus $e \le p$. Assume that there exists an orthogonal projection r such that $r \le p$. Then $r \le p^*$. Therefore, $rH \subseteq pH \cap p^*H$. This means that $r \le e$.

Now, assume $p \in P_U$. Let $y \in pH \cap p^*H$, and let $x, x_0 \in H$ be such that y = px and $y = p^*x_0$. By Proposition 1,

$$pU^{-1}x_0 = U^{-1}p^*x_0 = U^{-1}y = U^{-1}px = U^{-2}p^*Ux = p^*U^{-1}x$$

and $pUx_0 = Up^*x_0 = Uy = Upx = p^*Ux$. Thus $Uy, U^{-1}y \in pH \cap p^*H$. This means that $U^{-1}eU \ge e$ and $UeU^{-1} \ge e$. Hence $U^{-1}eU = e \in \prod_U$.

Definition 3. The projection e from Proposition 2 is said to be the orthogonal component of p and is denoted by p_{or} . A projection $p \in P_U$ is said to be a properly skew projection if $p_{or} = 0$.

It is clear that for any $p \in P_U$, $p \neq p^*$ the projection $p - p_{or}$, is a properly skew projection.

The following proposition was proved in Matvejchuk (1998).

Proposition 4. Let p be a bounded projection. Denote by $(p + p^*)_+$ <u>the positive</u> part of the $p + p^*$. Let e_+ be the orthogonal projection onto $(p + p^*)_+H$. Then $e_+pe_+ = \frac{1}{2}(p + p^*)_+$ and $e_+pe_+ \ge e_+$.

Denote by \mathcal{A}_U the von Neumann algebra $\{a \in B(H): aU = Ua\}$.

Remark 5. If $p \in P_U$, then $e_{+}pe_{+} \in \mathcal{A}_U$.

Proof. Let $p + p^* = \int \lambda \, de_{\lambda}$ be the spectral decomposition for $p + p^*$. We have $U^{-1}(p + p^*)U = p^* + p$. Hence $p + p^* \in \mathcal{A}_U$. By the uniqueness of the spectral decomposition, $e_{\lambda} \in \mathcal{A}_U$, $\forall \lambda$. Hence, $e_{+} \in \mathcal{A}_U$, too. Finally, $e_{+}pe_{+} = \frac{1}{2}e_{+}(p + p^*)e_{+} \in \mathcal{A}_U$.

Put $e_{-} \equiv I - e_{+}$. Denote by F_{y} the orthogonal projection onto yH, $\forall y \in B(H)$.

In Matvejchuk (1995, 1998), there are hyperbolic and conjugation analogies of the following proposition with similar proofs.

Proposition 6. Let $p \in P_U$, and let $e_{-pe_+} = w|e_{-pe_+}|$ be the polar decomposition for e_{-pe_+} . Then $x \equiv e_{+}pe_{+} (\geq e_{+}) \in \mathcal{A}_U$, and $U^{-1}wU = -w$, and the formula

Unitary Self-Adjoint Logics of Projections

$$p = x + w(x^{2} - x)^{1/2} - (x^{2} - x)^{1/2}w^{*} - w(x - F_{x})w^{*}$$
(1)

holds.

Conversely, let $x \in \mathcal{A}_U$ be such that $x \ge F_x$, and let there be an isometry $w, U^{-1}wU = -w$, with the initial projection F_x and a final projection e such that $e \perp F_x$. Then (1) defines a projection from P_U .

Proof. Let
$$p \in P$$
. By Remark 6, $x \in \mathcal{A}_U$. We have

$$e_{+}pe_{-} = \frac{1}{2} e_{+}(p + p^{*})e_{-} + \frac{1}{2} (e_{+}pe_{-} - e_{+}p^{*}e_{-})$$

= 0 + $\frac{1}{2} (e_{+}pe_{-} - e_{+}p^{*}e_{-})$

Hence

$$e_{+}pe_{-} = -e_{+}p^{*}e_{-} = -(e_{-}pe_{+})^{*}$$
⁽²⁾

Similarly,

$$e_{-pe_{+}} = -e_{-p}*e_{+} = -(e_{+}pe_{-})*$$

By (2), we have

$$|e_{-pe_{+}}| = ((e_{-pe_{+}})^{*}(e_{-pe_{+}}))^{1/2} = (-(e_{+}pe_{-})e_{-}pe_{+})^{1/2}$$
$$= (e_{+}p(e_{+} - I)pe_{+})^{1/2} = ((e_{+}pe_{+})(e_{+}pe_{+}) - e_{+}pe_{+})^{1/2}$$
$$= (x^{2} - x)^{1/2}$$

Thus $e - pe_+ = w(x^2 - x)_2^1$ and $e_+pe_- = -(e_-pe_+)^* = -(x^2 - x)_2^1 w^*$. It is clear that $x|e_-be_+| = |e_-pe_+|x$ and

$$U^{-1}wU|epe_{+}| = U^{-1}w|e_{-}pe_{+}|U = U^{-1}(e_{-}pe_{+})U = e_{-}U^{-1}pUe_{+}$$
$$= e_{-}p^{*}e_{+} = -e_{-}pe_{+} = -w|e_{-}pe_{+}|$$

Hence $U^{-1}wU = -w$.

Now, we show the equality $e_{-pe_{-}} = -w(x - F_x)w^*$. We have

$$e_{+}pe_{-} = (e_{+}pe_{+})(e_{+}pe_{-}) + (e_{+}pe_{-})(e_{-}pe_{-})$$

i.e.,
$$(x^2 - x)^{1/2} w^* = x(x^2 - x^{1/2} w^* + (x^2 - x)^{1/2} w^*(e_{-}pe_{-}))$$
. Hence

$$(x^2 - x)^{1/2} (F_x - x) w^* = (x^2 - x)^{1/2} w^*(e_{-}be_{-})$$
(3)

If $z \in e_-H \ominus \overline{e_-pH}$, then $w^*\underline{z} = 0$ and $e_-pe_-z = 0$. This means that $-w(x - F_x)w^*z = e_-pe_-z$. If $z \in e_-pH$, then $w^*z \in (x^2 - x)^{1/2} H$. By (3), $(F_x - x)w^*z = w^*(e_-pe_-)z$, i.e., $-w(x - F_x)w^*z = e_-p_-z$, $\forall z \in H$. The proof of (1) is completed.

Let $x \in \mathcal{A}_U$ be such that $x \ge F_x$, and let w, $U^{-1}wU = -w$, be an arbitrary isometry with the initial projection F_x and a final projection e, where

 $e \perp F_x$. Note that $U^{-1}wU = -w$ implies $U^{-1}w^*U = -w^*$. Hence $U^{-1}ww^*U = ww^*$ and $U^{-1}w^*wU = w^*w$. Thus $e = w^*w \in \mathcal{A}_U$. Using the right-hand side of (1), define *p*. It can be easily verified that $p^2 = p$ and $U^{-1}p^*U = p$. Hence $p \in P_U$. QED

To describe measures on a projection logic, it turns out to be useful to know its one-dimensional projections.

Now we give an illustration of the Proposition 6 for one-dimensional projections. Let *H* be a complex Hilbert space. Obviously, the operator (.,f)g $(\neq 0)$ is a projection if and only if (f,g) = 1. We may assume that ||f|| = ||g||.

Let (., f)g be an orthogonal projection. It is evident that $(., f)g \in P_U$ if and only if vectors f,g are eigenvectors of U.

Now, let (., f)g be a properly skew projection and let $(., f)g \in P_U$. Then

$$(., f)g = U^{-1}((., f)g)^*U = U^{-1}(., g)fU = (., U^{-1}g)U^{-1}f$$

Hence $f = \mu U^{-1}g$ and $g = \beta U^{-1}f$, where $|\mu| = |\beta| = 1$. Let $e^{i2\alpha} = \mu\beta$, $0 \le \alpha < \pi$. Then $f = \mu\beta U^{-2}f = e^{i2\alpha}U^{-2}f$ and $g = e^{i2\alpha}U^{-2}g$. The projection (.,f)g is a properly skew projection. This means that the numbers $e^{i\alpha}$ and $e^{i\alpha+\pi}$ are both eigenvalues of U. Let H_{α} and $H_{\alpha+\pi}$ be eigensubspaces of U corresponding to $e^{i\alpha}$ and $-e^{iga}$, respectively. Denote by r_{α} and $r_{\alpha+\pi}$ the orthogonal projections onto H_{α} and $H_{\alpha+\pi}$. Let $U = f_0^{2\pi} e^{i\lambda} de_{\lambda}$ be the spectral decomposition for U. We have

$$1 = (f, g) = \mu \int_0^{2\pi} e^{-i\lambda} d(e_{\lambda}g, g) = \mu e^{-i\alpha} ((r_{\alpha}g, g) - (r_{\alpha+\pi}g, g))$$

Hence $\mu = \pm e^{i\alpha}$ (= β). Similarly, $1 = \pm [(r_{\alpha}f, f) - (r_{\alpha+\pi}f, f)]$. Denote by *S* the unit sphere in *H*. Let $\phi \in S \cap r_{\alpha}H$ and $\phi^{\perp} \in S \cap r_{\alpha+\pi}H$ be such that $g = a\phi + b\phi^{\perp}$, $a, b \in R$. Then $f = \pm [a\phi - b\phi^{\perp}]$ and $\pm [a^2 - b^2] = 1$. Thus

$$(., f)g = \pm (., a\phi - b\phi^{1})(a\phi + b\phi^{1})$$

$$\pm [a^{2}(., \phi)\phi + ab(., \phi)\phi^{1} - ab(., \phi^{1})\phi - b^{2}(., \phi^{1})\phi^{1}]$$

where $\pm (a^2 - b^2) = 1$. For instance, if $a^2 - b^2 = 1$, then $x = e_+(., f)ge_+ = a^2(., \phi)\phi$ and $w = (., \phi)\phi^{\perp}$ (see Proposition 6).

Conversely, let $e^{i\alpha}$ ($0 \le \alpha < \pi$) and $e^{i(\alpha + \pi)}$ be eigenvalues of U both. Let vectors ϕ , $\phi^{\perp} \in S$ be eigenvectors of U with respect to $e^{i\alpha}$, $-e^{i\alpha}$, respectively. Then (., f) $g \in P_U$, for $f = a\phi - b\phi^{\perp}$ and $g = a\phi + b\phi^{\perp}$, where $a, b \in R$ and $a^2 - b^2 = 1$.

Hence we have proved:

Proposition 7. (1) The logic P_U contains one-dimensional projections if and only if U has eigenvalues.

Unitary Self-Adjoint Logics of Projections

(2) The logic P_U contain one-dimensional properly skew projections if and only if there exists $\alpha \in [0, \pi)$ such that $e^{i\alpha}$ and $-e^{i\alpha}$ are both eigenvalues of U.

Note that the set of all self-adjoint, with respect to the unitary operator $e^{i\alpha}(r_a - r_{\alpha+\pi}) [= U/(H_\alpha \oplus H_{\alpha+\pi})]$, projections on the Hilbert space $H_\alpha \oplus H_{\alpha+\pi}$ was called a hyperbolic logic. Measures on these logics were completely described.

Corollary 8. Let $\sigma(U)$ be the spectrum of U. If $\alpha \notin \sigma(U)$ or $\alpha + \pi \notin \sigma(U)$, $\forall \alpha \in [0, \pi)$ then $P_U = \prod_U$.

Proof. By the assumption on $\sigma(U)$, we have $\mathcal{A}_U = \{a \in B(H): aU^2 = U^2a\}$. Hence, by Proposition 1, $p^*U = Up = pU$, $\forall p \in P_U$. This means that $p^* = p$, $\forall p \in P_U$.

ACKNOWLEDGMENTS

The research described in this paper was made possible in part by the Russian Foundation for Fundamental Research, grant 96-01-01265.

REFERENCES

- Matvejchuk, M. S. (1989). Measure Structure on Logic of Skew Projections. I, Izvestija Vysshikh Uchebnukh Zavedenii. Mathematica, 8, 39–44 [English translation, Russian Mathematics (Izvestiya VUZ), 33(8)]
- Matvejchuk, M. S. (1995). Vitaly–Hahn–Saks theorem for hyperbolic logics, *International Journal of Theoretical Physics*, 34, 1567–1574.
- Matvejchuk, M. S. (1998). Probability measures in W J-algebras in Hilbert space with conjugation, Proceedings of the American Mathematical Society, 126, 1155–1164.